On Intertwining and Factorization by Self-Adjoint Operators
نویسندگان
چکیده
منابع مشابه
Adjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملAdjoints and Self-Adjoint Operators
Let V and W be real or complex finite dimensional vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there is a transformation L∗ : W → V for which 〈Lv,w〉W = 〈v, Lw〉V (1) holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the adjoint of L. Some of the properties of L∗ are listed below. Proposition 1.1. Let L : V →W be linear. ...
متن کاملSelf-adjoint operators on surfaces in Rn
Our aim in this paper is to define principal and characteristic directions at points on a smooth 2-dimensional surface in the Euclidean space R in such a way that their equations together with that of the asymptotic directions behave in the same way as the triple formed by their counterpart on smooth surfaces in the Euclidean space R. The definitions we propose are derived from a more general a...
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 1978
ISSN: 0008-4395,1496-4287
DOI: 10.4153/cmb-1978-008-6